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Abstract

Computational fluid mechanics techniques for examining
free surface problems for coating flows in two dimensions is
now a well-established procedure, owing much to the efforts
of Scriven and his researchers.1.2 Extending these methods to
three dimensions requires a reconsideration of some of the
same long-standing difficult issues for coating flows as well
as special algorithms designed for the added geometric
complexity. This paper presents a non-linear elastic pseudo-
solid approach for deforming meshes in three dimensions.
Special boundary conditions on the pseudo-solid mesh
motion constrain its motion in the normal direction
according to the relevant fluid physics, but allow shear-free
motion of the mesh tangential to bounding surfaces. Within
the standard Galerkin Finite Element formulation of the
problem, these goals are achieved by locally rotating the
pseudo-solid momentum vector equations at the boundaries.
Moving or static contact lines provide a challenge in 3D
because contact angle conditions must be imposed so that
the fictitious solid, in which the mesh is embedded, may
slide tangentially along three-phase lines unhindered. The
computational techniques discussed in this talk are illustrated
with two applications: solid-body rotation of fluid, and
extrusion of an incompressible Newtonian fluid from a
square nozzle.

Introduction

Prediction of the fluid mechanics of coating flows presents a
special challenge to computational techniques because the
position of the various material surfaces of the flowing
liquid as well as the fluid velocity and pressure are unknown
a priori. An attractive approach involves determining the
shape of the computational domain simultaneously with the
fluid flow. There are many methods for solving free and
moving boundary problems, but this paper focuses on an
approach which uses the finite element method (FEM) and
incorporates a 'Full-Newton' iteration on both the Navier-
Stokes equations and the moving mesh equations. By full

Newton, we mean that all the equations are solved simul-
taneously and are assumed to be fully coupled.3 This implies
that the Newton-Rhapson iteration on the set of nonlinear
algebraic equations resulting from the finite element
formulation includes a Jacobian matrix which incorporates
contributions from all the equations, and the order of the
Jacobian matrix is almost twice that of comparable fixed
boundary problems, with many additional nonzero entries
accounting for the pervasive sensitivity of the equations to
boundary deformations. The power of such a method has
been demonstrated repeatedly for a wide variety of
free-surface flow problems.1,2,4

In the past such methods have been applied primarily to
two-dimensional and axisymmetric fluid flow problems. In
some cases with geometrically simple flow domains these
methods have been applied to three-dimensional flow
problems [e.g. 5,6], but these applications have been limited
to structured grids, decoupled methods, or small
deformations. This paper displays initial three-dimensional
results which demonstrate the applicability of the Full-
Newton approach for complicated geometries and large
free-surface deformations. The algorithms outlined here were
implemented and tested in GOMA, a computational fluid
mechanics code from Sandia National Laboratories.7 This
paper demonstrates the challenges of this method and how
they are overcome while transforming from 2D to 3D.

Issues in Extending 2D Free-Surface CFD
Methods to 3D

There are many steps involved in extending free surface
computational fluid mechanics from 2D to 3D, and in this
paper we discuss several of the most significant hurdles. The
fully-coupled implementation of FEM leads to poorly
conditioned matrix problems, which demands solution by
direct methods; however, the work required to solve the 3D
matrix problem directly grows precipitously with the size of
the problem, mainly due to the increase in matrix band-
width. Thus 3D demands a transition to iterative solvers.
The other major hurdle deals with techniques for moving the
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mesh: the mesh deformation must be robust under large
dilation and rotation, and the mesh must conform to the
boundaries. To make a pseudo-solid mesh conform to the
boundaries, the mesh equations are rotated near arbitrarily
oriented surfaces.

Pressure Stabilization and Iterative Solvers
Difficulty arises in numerical solution of incom-

pressible flow problems with the finite element method
(FEM) due to the idiosyncratic nature of the mass balance
when the fluid is incompressible. The mass balance, or
continuity equation, for incompressible flow becomes an
expression that the velocity is solenoidal and involves no
other variables than the velocity. However, the mass balance
equation is used to represent the behavior of the pressure,
though the pressure is not explicitly included within it.
Thus, when the problem is reduced to a matrix equation with
the matrix containing the equations at each FEM node, zeros
appear on the diagonal since the pressure equation contains
no pressure variable. This makes inversion of the matrix
quite difficult and robust direct solvers must be used. The
problem with direct solvers is that they are both
computational and memory intensive and hence ill suited for
3D flow problems.

The Galerkin least squares method, or pressure stabil-
ization as it is also known, is used to stabilize the pressure
equation by adding a nonzero term on the diagonal.8,9 The
standard finite element formulation weights the momentum
equation and the continuity equation with the shape function
used to describe the interpolation of the variables. When
pressure stabilization is used, the momentum equation is
dotted into the gradient of the Galerkin weight and added on
to the Galerkin continuity equation weighted residual. This
gives us a pressure term in the pressure equation, resulting
in a non-zero diagonal and a modified continuity residual.
The assumption here is that as the solution converges, the
momentum residual will go to zero resulting in a truly
solenoidal velocity field.

Once the Jacobian matrix has nonzero diagonal
elements, the matrix equation become much easier to solve
and iterative matrix solution techniques, such as GMRES
and CGS, can be used that require much fewer computational
resources and enable the solution of 3D incompressible flow
problems. An added benefit to iterative solution techniques
is that these algorithms parallelize efficiently, allowing
solution on parallel architectures capable of solving much
larger problems.

Pseudo-Solid Mesh Motion
Among the computational approaches available for free

and moving boundary problems, the best choice depends on
the particular problem. Each computational technique offers
its own balance between efficiency, accuracy, and robustness

1,2,3,4 The most accurate techniques parameterize the free or
moving boundary as a mathematical curve (two dimensions)
or surface (three dimensions) in space, i.e., boundary
parameterization techniques, so that boundary conditions
may be applied precisely at an interface with a
well-represented location, orientation and curvature.
Moreover, exact boundary parameterization makes possible
the solution of distinctly different field equations according
to the governing physics in each region of the
computational domain.

The purpose of this research is to make a boundary-
conforming domain mapping technique as robust as
possible. Here the term robust implies a technique that will
most often succeed in converging to the solution, if a
solution exists. Domain mapping techniques are distin-
guished from boundary mapping techniques; in the latter
case the primary focus is on parameterizing the shape of an
unknown free boundary with one less dimension than the
computational domain. The focus of this work is to solve
mesh-position equations simultaneously with the field
equations which place no restriction on mesh structure and
are amenable to the full-Newton approach. One such set of
mesh-positioning equations meeting these guidelines for
domain mapping are those describing the quasi-static
deformation of an elastic solid continuum under boundary
loads [3]. This pseudo-solid domain mapping procedure is
suitable for a range of free boundary problems where the
topology of the initial guess domain and the final domain
are similar. The essential restriction is that the connectivity
of the domain remain the same; e.g., a simply-connected
domain is not permitted to evolve into a doubly-connected
domain. A further requirement on the mesh motion is that it
be robust under large deformations and rotations (as shown
later in the paper). We use a large-strain Neo-Hookean
constitutive equation to relate the pseudosolid stresses to the
mesh strain.7,10

So-called distinguishing conditions serve to constrain
the position or motion of the boundaries of the general
deforming domain. These constraints, applied to the
pseudo-solid deformation, differ from boundary conditions
that are conventionally applied to solid materials in that they
are not expressed specifically in terms of the mesh
displacement or tractions, but rather in terms of whatever
variables are relevant to the free boundary problem. Thus,
the position of the fictitious solid on the interior of the
domain is not coupled to the solution of the fluid mechanics
problem. This coupling only occurs at the boundaries of the
domain and is governed by distinguishing conditions. The
mesh is boundary-fitting; i.e. the mesh must expand or
contract so that it exactly fills the domain of the fluid. Thus
the motion of the mesh is constrained in the direction
normal to its boundaries, and slides in all tangential
directions to relieve internal stresses of the fictitious solid.
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Rotation of Mesh and Momentum Equations at
Boundaries

At the boundaries, distinguishing conditions constrain
the motion of the mesh in the normal direction; an issue is
how to apply these conditions within the finite element
framework. Because the mesh motion equations are
vectorial, three mesh motion equations are associated with
each nodal point. In simple situations the choice which of
the three mesh momentum equations to replace by the
boundary condition is easy because the surface lines up with
a coordinate plane (i.e. if the surface were a plane facing in
the y direction, the plane boundary condition would replace
the y component of the mesh momentum equation). Such
simple rules break down in general cases, especially when
the boundaries rotate during the computation. Note that
replacing a normal-directed momentum equation by a
distinguishing condition not only constrains the normal
motion of the boundary but also implies (through the weak
formulation of the finite element method) mesh is stress-free
in the remaining two tangential directions. Note too, that ad
hoc procedures for choosing different natural coordinates
based on the instantaneous surface orientation can lose
continuous differentiability and therefore lose the quadratic
convergence of Newton's Method. Choosing the wrong
mesh equation to replace by a distinguishing condition
causes mesh distortions near the boundary that resemble
tangential shear stresses along the boundary. In general the
best looking meshes result when the mesh is tangentially
shear free near the boundary.

Figure 1: Illustration of the issues surrounding rotation of mesh
equations on surfaces and edges.

Thus we choose to rotate all of the mesh equations
along the boundary into normal-tangential form and replace
the normal component of the rotated equations by the
distinguishing condition [3]. This method has proven
effective in 2D to produce meshes which undergo a large
degree of rotation and deformation [7,11]. An additional
problem occurs in 3D, however, which is especially evident
when using unstructured grids: the normal-tangential
rotation of the equations is not unique because all tangents
in the plane of the surface are equally valid. Thus for
efficient numerical computation, the tangents in 3D must be

chosen using a protocol that is independent of which
element or node is currently active and that is independent of
the orientation of the surface. We have tried a variety of
methods; the two most successful methods to obtain the
first tangent vector use seed tangents and basis vectors. The
second tangent vector is obtained by a cross product between
the normal and the first tangent vector.

Seed tangents can be used to force a tangent to orient in
a consistently reproducible direction by projecting the
tangent onto the plane, t 1 = (I-nn)• s .t 1 is the first tangent
vector in the plane, I is the identity matrix, n is the unit
vector normal to the plane, and S is the seed vector, this
sector must be normalized to obtain a unit vector. This
meth-od works well for nearly flat surfaces and breaks down
when the seed vector is nearly coincident with the normal
vector.

The local element basis vectors can also be used as
tangent vectors. This method only works if the tangent
resulting from one element is then used to seed the
calculation of the tangent in an adjacent element (strictly,
this methods is performed on a node-by-node basis to ensure
that each node feels the weighting of all adjacent elements).
As shown in the results section, this method enables
efficient rotation of the mesh to any angle.

At an edge where two surfaces intersect, the line tangent
(along the curve of intersection), t , is well defined except for
its direction. To determine the direction of the tangent, one
of the intersecting surfaces is labeled as the primary surface
whose normal is labeled n1, and the cross product between
n1 and the line tangent is defined as the binormal, b , which
is defined as outward pointing from the primary surface, this
determines the direction of the line tangent in a consistent
and reproducible fashion

Sample  Results

These methods have been applied to several applications
[11]. Here we present two applications, one which
demonstrates the accuracy of the results for fluid under
solid-body rotation and another which demonstrates the
power of the method for analyzing a more complex
extrusion problem.

Figure 2. Sample predictions of 3D free surfaces of a fluid under
solid-body rotation with angular velocities that cause vertical
displacements of a) ∆z = 0,05 b) ∆z = 0.25 c) ∆z = 0.5.

Solid-Body Rotation of Fluid with a Free Surface
The free surface of a fluid in solid body rotation

becomes a paraboloid of revolution (in absence of surface
tension) at steady-state. Thus this is a simple problem for
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testing whether the 3D fluid mechanics computations are
producing the correct results. Figure 2 displays predictions
for a fluid in a rotating cup. The mesh is unstructured and
obeys the kinematic condition that serves as the
distinguishing condition of the material surface. There is
no-slip between the fluid and the walls or bottom of the cup,
so there. The contact line where the free surface meets the
cup wall is pinned at a fixed position and the angle is not
constrained. Using a fixed contact line simplifies the edge
conditions and alleviates the need for a constraint on the
volume, which is implied by the constraint on the height of
the contact line. As the angular velocity of the cup,ω ,
increases the free surface sags further into the cup:

∆z (0) =
ω 2

2g
     (1)

∆z(0) is the depth that the free surface sags at the axis of
rotation, and g is the magnitude of gravity; this result is
independent of density and viscosity.

Figure 3. Comparison between free surface shape predicted by
3D Computational Fluid Mechanics  (symbols) and the
analytical result (lines) for a fluid in solid-body rotation.

Figure 3 shows the comparison between the results of
this model and the standard analytical solution for a range of
angular velocities. For all the results shown the finite
element predictions match the analytical results. Note that a
match between our results and the analytical solution is not
trivial because the finite element mesh does not possess
cylindrical symmetry.

Extrusion from a Square Nozzle
Many industrial processes involve extrusion of a liquid

from an orifice; the subsequent evolution of the fluid cross
section is of interest. This example problem displays
predictions of fluid exiting from a nozzle of square
cross-section and falling under gravity (Figure 4). The fluid
enters the nozzle under an applied pressure force and has zero
velocity (no-slip) along the walls of the nozzle. The free
surface is pinned to the lip of the nozzle. The fluid exits the

domain with an assumed zero shear and tangential stresses
that approximates the physical situation; strictly, the fluid
stream accelerates under the action of gravity and continues
to thin, ultimately breaking up. The conditions chosen for
the results in Figure 4 ensure that the shape of the jet is
sensitive to the competing effects of gravity, inertia,
capillary forces, and viscosity. Using the nozzle half-width
and the maximum velocity at the nozzle entrance, the
Reynolds number is about 12.5, the Capillary number 1.7,
and the Froude number 10.

These solutions were predicted using continuation
starting from a nozzle oriented vertically (labeled in Figure
4). During initial solution of the problem, the free surface
evolved from a square to a nearly circular cross-section
through the combined actions of surface tension and
viscosity. Then the nozzle was slowly rotated (in
increments) to achieve the results in Figure 4. Several
problems arise in this problem when the nozzle rotation
becomes large: 1) the mesh at the nozzle exit becomes
distorted, 2) the elements at the bottom of the mesh elongate
in order to reduce dilational and shear stresses, and 3) some
oscillations in the free surface occur as the mesh distortion
becomes too large. Increasing the discretization (currently
8600 unknowns) should help alleviate some of these
problems.

Conclusions

This paper demonstrates a method for solving 3D
free-surface fluid mechanics problems using a boundary fitted
mesh and fully-coupled nonlinear Newton's method. The
primary conclusion is that such a method does work, and
produces solutions that match analytical results in simple
cases, and match intuition in more difficult cases. We expect
to be applying this method to a wide variety of
manufacturing processes in the near future.11
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